Factors Affecting Critical Currents in Coated Conductors

Quanxi Jia - Microstructural properties

Leonardo Civale - Field dependent critical currents

FY2003 Funding: \$450K; 1.5 FTE

Superconductivity Technology Center Los Alamos National Laboratory

Factors Affecting Critical Currents in Coated Conductors

Microstructural properties

Quanxi Jia, Steve Foltyn, Paul Arendt Haiyan Wang, Yuan Lin, Yuan Li, Leonardo Civale Marilyn Hawley, and Chris Wetteland

> Superconductivity Technology Center Los Alamos National Laboratory

Judith MacManus-Driscoll (visiting staff member)

Dept. of Materials Science & Metallurgy Univ. of Cambridge, UK

Objective

To explore the fundamental correlation between the structural and the transport properties of coated conductors through comparative study of YBCO films on crystal and IBAD MgO substrates

Benefit

A more controllable and reproducible process to fabricate high performance coated conductors could be developed.

Outline

- > Introduction
- ➤ Comparative study of the microstructures of YBCO films on crystal and IBAD MgO
- Comparison of J_c vs. thickness of as-deposited and ion-milled YBCO films on crystal and IBAD MgO
- Summary

LANL uses IBAD MgO on commercial polycrystalline alloys to develop coated conductors

- On a single crystal substrate, texture is derived from homo- and/or hetero-epitaxial growth at elevated temperature.
- > On a polycrystalline substrate, a textured template must be provided before growth of desired epi-layers.

A smooth and highly crystalline IBAD MgO surface makes it possible for subsequent epitaxial growth of buffer and HTS films

X-ray reflectivity measurement shows the surface roughness of IBAD MgO being slightly rougher than crystal MgO.

Rms $\begin{cases} \text{Crystal MgO} \sim 0.6 \text{ nm} \\ \text{IBAD MgO} \sim 1.0 \text{ nm} \end{cases}$

More buffer layer materials can be used due to much improved quality of IBAD MgO

SrTiO₃, LaMnO₃, or SrRuO₃ buffers provide good structural compatibility with MgO and YBCO.

SrTiO₃ has more advantages such as

- > Chemical stability
- ➤ Thermal stability
- >Low cost
- ► High density target

Appl. Phys. Lett. **81**, 4571 (2002).

Excellent chemical composition of a thick film illustrates the feasibility of the process for coated conductors

RBS indicates good stoichiometry of the HTS thick film (~1.5 µm). The chemical composition of the film is what we expect.

Reciprocal map illustrates reduced grain tilt with increasing film thickness for Y123 on crystal MgO

Superconductivity for Electric Systems - Annual Peer Review ◆ July 23-25, 2003 ◆ Washington DC

Crystalline imperfection of Y123 on crystal MgO increases with film thickness

RBS ion channeling

Low χ_{min} is a direct indication of a good quality epitaxial layer. Point defects, impurities, dislocations, and slightly different orientations can all contribute to a large value of χ_{min} .

Increased film thickness leads to more out-of-plane tilt, but little difference for the in-plane misorientation

1.4° FWHM of φ-scan (103) for both 0.2 and 1.5 μm thick Y123 films

Ion channeling

- $\chi_{min} \sim 4\%$ for a 0.2 μ m Y123 film on crystal MgO
- ×_{min} ~ 28% for a 1.5 μm Y123 film on crystal MgO

Thick YBCO film (1.5 µm) can be epitaxially grown on crystal MgO substrate with high crystallinity

The out-of-plane tilt of thick YBCO on IBAD MgO is only 2-3 times of that on crystal substrate

Smooth and highly crystalline IBAD MgO surface poses no limitations on surface quality for subsequent epitaxial growth of high performance HTS films.

The in-plane texture of thick YBCO film on IBAD MgO is close to that on crystal MgO substrate

HTS film, processed under the same conditions having a thickness of 1.5 μm on crystal MgO substrate, has a typical in-plane texture of 1.4-1.7° FWHM from (103) reflection.

RBS ion channeling has been demonstrated for the first time for thick YBCO on a polycrystalline substrate

Big grains formed from small clusters comprise the surface topography of Y123 on IBAD MgO

Y123 (1.5 μm) on IBAD MgO

Y123 (1.5 µm) on MgO crystal

STM surface plot of a 1.5 µm thick YBCO film on IBAD MgO illustrates elongated grains

YBCO on IBAD MgO has higher (~5x) screw-type threading dislocation density than on crystal MgO

TEM shows good integrity for all the layers of a 1.5 μm YBCO film on IBAD MgO

The microstructure and the interface of STO/YBCO are basically the same for the films on crystal and IBAD MgO

Crystal MgO substrate

IBAD MgO substrate

HTS films on polycrystalline Ni-alloy using IBAD MgO are essentially equivalent to those on single-crystal substrates

Los Alamos

J_c vs. thickness of ion-milled YBCO films on IBAD MgO follows the same trend as the as-deposited films on crystal MgO

Thick Y123 film on IBAD MgO performs even better in magnetic field

Leonardo Civale's talk

Summary

- ➤ Microstructural analysis illustrates that thick YBCO films on IBAD MgO are as good as the films on crystal MgO.
- ➤ Variation of microstructures with film thickness has been concluded from XRD and RBS channeling.
- \triangleright Both as-deposited and ion-milled films follow the same J_c vs. thickness relationship.

